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Abstract: Microarray technology is a new and powerful tool for concurrent monitoring of 
large number of genes expressions. Each microarray experiment produces hundreds of 
images. Each digital image requires a large storage space. Hence, real-time processing of 
these images and transmission of them necessitates efficient and custom-made lossless 
compression schemes. In this paper, we offer a new architecture for lossless compression of 
microarray images. In this architecture, we have used a dedicated hardware for separation 
of foreground pixels from the background ones. By separating these pixels and using 
pipeline architecture, a higher lossless compression ratio has been achieved as compared to 
other existing methods. 
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1 Introduction1 
Genetics is accounted for an essential part of all 
biomedical and biological fields of research in recent 
years. Considering various applications of this science 
and its important role in discovery and diagnosis of 
various diseases, at the time being, extensive researches 
are being done on new technologies and methods in this 
area. 
Chromosomes are the long threads inside the nucleus of 
cells of all organisms. Each chromosome is composed 
of two types of large organic molecules 
(macromolecules) called proteins and nucleic acids. The 
nucleic acids are of two types: deoxyribonucleic acid 
(DNA) and ribonucleic acid (RNA). The genetic 
information of organisms is encoded in the structure of 
DNA. DNA consists of two long chains of subunits 
twisted around one another to form a double-stranded 
helix. The subunits of each strand are nucleotides, each 
of which contains any one of four chemical constituents 
called bases. The four bases in DNA are Adenine (A), 
Thymine (T), Guanine (G) and Cytosine (C). The bases 
in the double helix are paired. At any position on the 
paired strands of a DNA molecule, if one strand has a 
A, the partner strand has a T and if one strand has a G, 
the partner strand has a C. the pairing between A-T and 
C-G is said to be complementary [1,2]. Figure 1 shows 
the double helix structure of a typical DNA. 
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The genetic information of an organism is transmitted 
from cell to cell during development by the accurate 
replication of the sequence of bases in nucleic acids due 
to the precise base-pairing in double stranded nucleic 
acids. When the two strands of a parental double helix 
of DNA separate, the base sequence of each parental 
strand can serve as a template for the synthesis of a new 
complementary strand. 
Genes are encoded in the sequence of chemicals that 
make up DNA. A particular gene is said to express into 
a protein when it codifies that. One of the genetic 
research methods is to study the gene expression 
processes. Scientists can achieve a lot of information 
about the manner of activity of each gene, the structure 
of a protein made in a specific cell or detecting a 
particular gene in an organism by studying various 
phases of gene expression. Because of the large number 
of genes in an organism (for example a human body has 
30000 to 40000 genes), the number of experiments that 
are required to fully characterize an organism by means 
of gene expressions is huge. Traditional methods of 
laboratory experiments required years of investigation 
to characterize a disease [3,4]. 
Microarray analysis is a recently developed technique, 
which allows study and classification of genes in a 
much shorter time than ever before. Nowadays 
microarray technology has turned to be one of the main 
tools for genetic researches. A microarray experiment 
can monitor the expressions of thousand of genes 
simultaneously [5]. 
The substrate of a microarray consists of a piece of 
glass, or sometimes a silicon chip, similar to a 
microscope slide. Thousands of patches of single-
stranded DNAs which are called probes are fixed 
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(spotted) onto this substrate by a robotic arrayer. A 
typical microarray is a 2×4cm membrane or a 
microscope slide with a probe diameter of 75-100µm 
and a 150µm distance between probes. The location and 
sequence of each patch of DNA are known. A leading 
use of DNA is in determining which subset of a cell’s 
genes are expressed, or are actively making proteins 
under certain conditions such as exposure to a drug, 
toxic material, or malignancy [6]. 
Microarray technology is based on the ability of 
complementary base pairing of the nucleic acids. Probes 
are single strands with known sequences and are used as 
a template to identify the unknown agents. Target DNA 
mixture is then washed over onto the chip to allow base 
pairing that means only highly complementary 
sequences will remain bound to their pairs. Single 
strands in the target mixture may come for instance 
from healthy and cancerous cells. The goal could be to 
identify genes that are responsible for malignancy [7]. 
The target DNA mixture is labeled with different 
fluorescents dyes to distinguish between DNA 
originating from different experimental conditions. For 
instance, DNA from blood cancer cells may be labeled 
with the red fluorescing dye and that from normal blood 
cells with the green fluorescing dye. Then a laser 
scanner at two wavelengths or channels scans the 
microarray, one channel for each dye. Fluorescent 
intensity corresponding to each dye is recorded 
separately for each spot on the array. The products 
resulting from the array-scanning process are two 
fluorescent intensity images. These images are 
superimposed for each spot to arrive at the actual gene 
expression pattern for the cancerous blood cells. Array 
of spots fluorescing purely red present genes expressed 
only under cancer condition, while those that are pure 
green correspond to gene expressed only under normal 
conditions. Genes that are expressed under both 
conditions will appear as spots of varying degrees of 
yellow. The intensity ratio for each probe or spot is 
proportional to the relative abundance of DNAs of the 
two different samples [1]. A sample gray scale 
microarray image is shown in Fig. 2 [8]. The size of the 
image is 256×256 pixels and each spot is about 12×12 
pixels. As shown in this figure, microarray images have 
regular structures and spots normally have circular 
shapes. In microarray images, spots form the foreground 
of the image. 
 
2 Microarray Image Compression 
Each microarray experiment produces thousands of 
images. Microarray images are large in size and also 
each experiment is costly. Various organizations share 
their microarray databases. For efficient storage and 
sharing large number of these images, image 
compression is essential [10,13]. 
 

 
Fig. 1 Structure of a DNA 
 

 
Fig. 2 A sample gray scale microarray image [8] 
 
A compression algorithm takes an input χ  and 
generates a representation cχ  that requires fewer bits. 
There should also b a reconstruction algorithm that 
operates on the compressed representation cχ  to 
generate the reconstruction rχ . Based on the 
requirement of reconstruction, data compression 
schemes can be divided into two broad classes: lossless 
compression schemes, in which χ  are identical to rχ , 
and lossy compression schemes, which generally 
provide much higher compression than lossless 
compression but allow rχ  to be different from χ  [9]. 
“Huffman Coding” [10] and RLE (Run Length 
Encoding) [11] are two well known lossless 
compression schemes and “Vector Quantization” and 
“Transform Coding” are among lossy schemes [9]. 
Discrete Cosine Transform (DCT) and Discrete Wavelet 
Transform (DWT) are two of the techniques used for 
transform coding. These techniques are not lossy by 
nature but a quantization that is used afterward makes 
them lossy. Quantization simply reduces the number of 
bits needed to store the transformed coefficients by 
reducing the precision of those values. Since this is a 
many-to-one mapping, it is a lossy process and is the 
main source of compression in an encoder. 
Compression of microarray images could be done using 
lossless or lossy methods. It is obvious that compression 
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ratio of lossless methods is smaller than of lossy 
methods. For biomedical applications in which the pixel 
values have important information, lossless methods are 
the more appropriate choice. In microarray images, the 
intensity level of each spot contains important 
information about the gene expression. Loosing any part 
of this information could ruin the experiment and could 
result in completely different outcomes. Thus, for 
preserving the intensity of spots and their size by the 
compression algorithm, lossless schemes are more 
suitable. Until now, several methods have been 
proposed for the microarray image compression. Most 
of them are software implemented while a number of 
these methods have been realized by hardware. 
Jornsten et al. proposed a software compression method 
called SLOCO (Segmented LOCO) which is based on 
LOCO (LOw COmplexity) that is used in JPEG2000 
standard [12,13]. Hua et al. proposed a method called 
BASICA (Background Adjustment, Segmentation, 
Image Compression and Analysis). In BASICA object-
based EBCOT (Embedded Block Coding Optimized 
Truncation) is used for lossless image compression [14]. 
Lonardi and Luo proposed a software called “Microzip” 
that after necessary processes, compress foreground 
values in a lossless form and background values by 
lossy means [15]. Faramarzpour et al. proposed a 
software lossless compression method. This method is 
based on the inherent property of microarray images 
which is the circular shape of spots. The idea in this 
method is to convert the 2D structure of the image into a 
1D sequence which can scan the image in a highly 
correlated manner while preserving its spatial continuity 
[16]. Their method considers worst case scenarios and 
hence, does not come up with high compression ratios. 
A lossy method is proposed in [17] using a software 
routine. In that method the spots in the microarray 
image are extracted and a circle region is superimposed 
onto each of the spots. Then a circle to square (C2S) 
transform is performed to transform the area inside the 
circle of each spot to a corresponding square shaped 
image. The image is constructed by tiling the C2S 
transformed images together. Then the image is divided 
into 8×8 blocks and DCT is applied to each block. The 
transformed blocks are quantized and the image is 
coded by variable length coding. 
A hardware method has been applied in [18] for lossless 
compression of microarray images. The input image 
which is inserted row-by-row to the pipeline 
architecture, is processed in the first stages and is 
compressed and transmitted in the final stages of the 
pipeline. Karimi et al proposed in [19] two pipeline 
architectures for the microarray image compression. In 
the first architecture, “Pseudo-RLE” method is applied 
and in the second architecture, “Residual Huffman 
Coding” method is used for the compression of images. 
In the residual Huffman coding method, codes are 
calculated for the difference between every two 
neighboring pixels. Samavi et al [20] proposed another 

hardware method based on pipeline architecture for 
microarray image compression. The image is first 
processed and through morphological operations noise 
and very small spots are eliminated. For compression 
purposes they process the pixels of the image in a raster 
scan order. Then a predictive coding algorithm is used 
to produce a residual sequence for each raster scan. 
Finally, Huffman coding is performed on the small-
magnitude residual sequences. 
In this paper we propose a hardware method which can 
compress microarray images with close to real time 
speeds. The achieved compression ratio is even better 
than some of the software routines that are in the 
literature. The proposed hardware could be used for 
other applications such as implementation of run length 
encoding. 
In section 3 of the paper the proposed architecture is 
explained. Simulation results are presented in section 4 
and concluding remarks are offered in section 5. 
 
3 The Proposed Architecture 
In this section, the proposed architecture is presented for 
the compression of microarray images. The block 
diagram of the structure is shown in Fig. 3. In this 
method, image data enters the circuit in a row-by-row 
manner. After the arrival of one row of the image, the 
foreground and background pixels are separated from 
each other. Foreground of a microarray image is the 
collection of pixels whose values are non-zero (spot 
pixels) and hence, background is the pool of pixels with 
zero values. Because of zero values of the background 
pixels, it is enough to store the coordinates. For this 
reason, corresponding bitmap of each row is calculated: 
for each pixel of the row which has zero value a “0” bit 
and for those with non-zero values, a “1” bit is inserted 
in the corresponding bitmap. Consequently, in the 
resulting bitmap, bits corresponding to background are 0 
and those corresponding tosspots or foreground are 1. 
Here a new method is used for compressing the bitmap 
of each row. In this method, indices of the starting of 
strings 0’s and 1’s in the bitmap are extracted. Data that 
should be transmitted for each row is the extracted 
indices instead of the whole bitmap. At the receiver end 
the original bitmap can be reconstructed using these 
indices. A dedicated hardware is used to acquire the 
indices, which will later be explained in details. 
On the other hand, the foreground or the spot values, 
which have corresponding 1’s in the bitmap, are 
separated from the background. It is also done by the 
dedicated hardware that is used to acquire the indices of 
the starting of strings in the bitmap. Details of this 
hardware will later be explained. Extracted foreground 
values can be compressed using various compression 
methods. Here, residual Huffman coding is used. For 
this purpose residual values of neighboring foreground 
pixels are calculated and coded using Huffman coding 
method. 
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Fig. 3 Block diagram of the proposed architecture 
 
Pipeline stages for foreground compression are shown 
in Fig. 4. It is assumed that each row of the input image 
contains 256 pixels and the value of each pixel is 
presented by an 8-bit value. One row of image is 
inserted to the pipeline in each cycle of pipeline clock. 
The bitmap of the input row is calculated in the first 
stage of the pipeline shown in Fig. 4. The output of this 
stage is a 256-bit bitmap in which one bit is assigned to 
each pixel of the inserted row. If the value of a pixel is 
zero, then the corresponding bitmap position will be 0, 
otherwise a 1 appears in the bitmap. For calculating the 
bitmap corresponding to the input row, 8 bits of each 

pixel value are “OR”ed with each other. For this reason 
256 8-input OR gates are used and thus the operation of 
producing bitmap is done in parallel. 
The calculated bitmap contains strings of 1’s and 0’s. In 
the next stage of the pipeline that is shown in Fig. 4, the 
starting locations of these strings are obtained. By 
“XOR”ing the neighboring values, in the beginning of a 
new string where there is a 0 to 1 or 1 to 0 transition the 
output will be 1. In this way for the inner pixels of the 
strings where the neighboring values are the same, the 
output will be 0. Because each row begins with 
background or zero values, the first string of the bitmap 
is always a 0 string and following strings are 
alternatively 1’s and 0’s. Thus knowing only the place 
of the beginning of each string is enough and the type of 
the strings are easily distinguishable. Hence, the indices 
of elements that are 1 in the output vector of the second 
stage are the beginning position of the strings of the 
bitmap. We present a new hardware called Compression 
Unit (C.U.) for obtaining these indices. Details of a C.U. 
are shown in Fig. 5. Inputs of a C.U. are X and Y 
vectors. This hardware compresses the elements of X by 
eliminating those elements of X which have 
corresponding zero in the Y vector. 

 

 
Fig. 4 Pipeline stages for the background compression 
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The designed C.U. unit is composed of units which we 
call them the Routing Units (R.U.). Details of an R.U. 
are shown in Fig. 6. Also shown in that figure are all 
possible combinations of control signals, Cin1, Cin2, 
and their corresponding routing action. For larger or 
smaller input vectors, the C.U. could be scaled up or 
down. Since the rows of the input image have 256 
pixels, the C.U. that is shown in Fig. 5 has 256-element 
input vectors. 
Compression of the bitmap corresponding to the input 
row is done by using a compression unit (C.U.). This is 
performed by assigning 0 through 255 to the X vector. 
Vector Y is the output of the second pipeline stage in 
Fig. 4. The output of C.U. is a 256-element vector 
whose elements are the indices of beginning of the 
bitmap strings. Only a small numbers of the elements, 
towards the beginning of the output vector, have 
significant values. This is because the number of strings 
in a row of a bitmap is much smaller than 256. 
 

Fig. 5 Internal structure of the compression unit (CU). 
 
Every row starts with a string of zeros; therefore, it is 
not necessary to save the index value for the beginning 
of these strings. Hence, the first string that we encounter 
in a row is a string of 1’s. Furthermore, every row ends 
with another string of zeros but the index value of start 
of that string needs to be saved. By placing a zero at the 
input of the first XOR at the left in Figure 4 we consider 
continuity between consecutive lines which creates 
higher compression ratio. In effect, the image is scanned 
in a raster scan manner. 
Table 1. shows different steps of the pipeline operations 
on a row of the bitmap. In one step the starting positions 
of different strings of 1’s and 0’s are found. We are only 
interested in the index value of these starting positions. 
We know that the first index in a row belongs to a string 
of 1’s and from there on they alternate between 0 and 1 

strings. These sparse positions are fed into the CU and 
the output is a dense and ordered group of indices 
corresponding to the starting positions of the strings of a 
row. Figure 7 shows an example for the routing 
operation of the CU. The input to the CU is, for 
example, 00100101. The CU is to place the indices of 
the 1’s at its input in a dense manner at its output. 
 

 
(a) 

 

Transference  Control 
 line Cin2 

Control 
 line Cin1 

Up_in àDown_out 0 0 

Right_in àDown_out 0 1 

Up_in àLeft_out 1 0 

Right_in àDown_out 1 1 

 
Fig. 6 Details of the R.U. unit (a) structure (b) various 
states of control signals 
 
Table 1 An example for different processes performed 
on a row of bitmap. 

0 0 1 1 1 1 1 0 0 1 1 1 1 1 0 0 A partial bitmap of 
a row 

0 1 0 0 0 0 1 0 1 0 0 0 0 1 0 0 Starting position of 
the strings 

F E D C B A 9 8 7 6 5 4 3 2 1 0 Corresponding 
index of each 
position 

0 0 0 0 0 0 0 0 0 0 0 0 E 9 7 2 Out put of the CU 

 
Figure 8(a) shows an example with four spots in an 
18×18 microarray image. All of the non-zero pixels 
belong to the spots and are considered as foreground. 
Each pixel has an eight-bit grayscale value. Therefore, 
to store this image 18×18×8 bits are required. Figure 
8(b) shows the bitmap of the image where the 1’s are 
for the foreground pixels and 0’s correspond to the 
background pixels. Figure 8(c) shows the starting 
location of the strings of 0’s and 1’s in the bitmap. Only 
when a new string starts we see a 1 and everywhere else 



 

Iranian Journal of Electrical & Electronic Engineering, Vol. 1, No. 4, October 2005  20 

we have 0’s. Figure 8(d) demonstrates how the indices 
of these starting positions are packed together. Only 
these values are required to be stored or transmitted in 
order to be able to reconstruct the bitmap. Another part 
of the hardware is responsible to get the foreground 
pixels and using a separate CU compresses them. Figure 
8(e) shows the resulted compressed foreground. These 
values are further compacted using Hoffman coding. 
Using a reconstructed bitmap the compressed 
foreground pixels can be formed again.  
The required number of bits to store the foreground and 
bitmap information without any further compression 
scheme is (8×24×4)+(8×54). This is because there are 
24 pixels in each of the 4 spots. To indicate an all-zero 
row an eight-bit code can be designated. In this way 48 
starting indices and 6 all-zero rows are to be stored. 
This shows that even without any type of variable 
length coding a compression ratio of 2.16 is achieved. 
Compression of the foreground pixels would further 
increase the compression ratio. 

 
Fig. 7 An example of the routing operation in a 
Compression Unit. 
 
Separation and compression of foreground is done in 
parallel with compression of the background. In order to 
separate the foreground from the background, yet 
another C.U. is used. After a row of the image enters the 
pipeline and its bitmap is produced, the original row and 
its corresponding bitmap are inserted to the C.U. block. 
The hardware used for the foreground compression is 
shown in Fig. 9. This part of the circuit works in parallel 
with the second stage of the pipeline shown in Figure 4. 
The output of the C.U. block of Figure 9 is a vector 
whose elements are the foreground pixels of the row, 
bunched up towards the left, while keeping their order. 
Then a predictive technique is used that capitalizes on 
inter-pixel spatial redundancy. To do so, we predict the 
next pixel based on the values of the previous 
neighboring pixels. This is done by computing the 

residual pixel which is the difference between the two 
neighboring pixels. Finally, we losslessly compress the 
residual data, using Huffman coding. Therefore, the 
information of a row has been de-correlated which 
causes the residual to have lower entropy. 
 
4 Simulation Results 
In this section we discuss the simulation results of the 
proposed compression architecture. We used a range of 
standard microarray images. Three of these images have 
been used by MicroZip and 14 images are from ISREC 
set. These images can be accessed from references [21] 
and [22] respectively. Using the mentioned predictive 
method, an average compression ratio of 3.89:1 is 
obtained for compression of the foreground values. 
Even though, the method is lossless, we obtained high 
compression ratio compared to the conventional lossy 
and lossless methods. 
Table 2 shows a quantitative comparison of the results 
of our proposed algorithm with some other algorithms. 
The hardware proposed in this paper was able to 
increase the compression ratio up to 2.17 times those 
presented in the literature. 
 
Table 2 Compression ratio of our method compared to 
some others 

Compression method Average compression ratio 
MicroZip [15] 2.46 
SLOCO [13] 1.83 
BASICA [14] 2.04 
Reference [16] 2.13 
Reference [20] 1.79 

Our method 3.89 
 
Most of the routines mentioned in Table 1 are software 
based. Reference [20] is a hardware implementation and 
speed of processing is of main interest not the 
compression ratio. In this paper we achieved higher 
compression ratio than the other references due to the 
following factors. First the foreground was separated 
from the background hence better spatial correlations 
have been achieved. Secondly, the new compression 
unit that is introduced here has enabled the system to 
compact the data more densely. 
 
5 Conclusion 
In this paper, we presented a new lossless compression 
method for microarray images. By statistical studies on 
microarray images, we concluded that for increasing 
compression ratio we should separate the foreground 
pixels form those of the background. For this reason a 
new hardware was designed and used that could extract 
out the foreground values and place them next to each 
other in an orderly fashion. The proposed method has 
increased the compression ratio significantly. 
Comparison of the results of this method with those of 
other lossless and lossy methods proves the efficiency 
of this method. 
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Fig. 8 Different steps of the suggested compression method shown for four spots. 
 

 
Fig. 9 Circuitry for the foreground compression 
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