
Iranian Journal of Electrical & Electronic Engineering, Vol. 1, No. 4, October 2005 15

Lossless Microarray Image Compression by Hardware
Array Compactor

A. Banaei*, S. Samavi* and E. Nasr Esfahani*

Abstract: Microarray technology is a new and powerful tool for concurrent monitoring of
large number of genes expressions. Each microarray experiment produces hundreds of
images. Each digital image requires a large storage space. Hence, real-time processing of
these images and transmission of them necessitates efficient and custom-made lossless
compression schemes. In this paper, we offer a new architecture for lossless compression of
microarray images. In this architecture, we have used a dedicated hardware for separation
of foreground pixels from the background ones. By separating these pixels and using
pipeline architecture, a higher lossless compression ratio has been achieved as compared to
other existing methods.

Keywords: DNA, Microarray, Image processing, Image compression, Pipeline.

1 Introduction1
Genetics is accounted for an essential part of all
biomedical and biological fields of research in recent
years. Considering various applications of this science
and its important role in discovery and diagnosis of
various diseases, at the time being, extensive researches
are being done on new technologies and methods in this
area.
Chromosomes are the long threads inside the nucleus of
cells of all organisms. Each chromosome is composed
of two types of large organic molecules
(macromolecules) called proteins and nucleic acids. The
nucleic acids are of two types: deoxyribonucleic acid
(DNA) and ribonucleic acid (RNA). The genetic
information of organisms is encoded in the structure of
DNA. DNA consists of two long chains of subunits
twisted around one another to form a double-stranded
helix. The subunits of each strand are nucleotides, each
of which contains any one of four chemical constituents
called bases. The four bases in DNA are Adenine (A),
Thymine (T), Guanine (G) and Cytosine (C). The bases
in the double helix are paired. At any position on the
paired strands of a DNA molecule, if one strand has a
A, the partner strand has a T and if one strand has a G,
the partner strand has a C. the pairing between A-T and
C-G is said to be complementary [1,2]. Figure 1 shows
the double helix structure of a typical DNA.

Iranian Journal of Electrical & Electronic Engineering, 2005.
Paper first received 14th November 2005 and in revised form 2nd
October 2006.
* The authors are with the Electrical and Computer Engineering
Department, Isfahan University of Technology, Isfahan, Iran.
E-mail: samavi96@cc.iut.ac.ir.

The genetic information of an organism is transmitted
from cell to cell during development by the accurate
replication of the sequence of bases in nucleic acids due
to the precise base-pairing in double stranded nucleic
acids. When the two strands of a parental double helix
of DNA separate, the base sequence of each parental
strand can serve as a template for the synthesis of a new
complementary strand.
Genes are encoded in the sequence of chemicals that
make up DNA. A particular gene is said to express into
a protein when it codifies that. One of the genetic
research methods is to study the gene expression
processes. Scientists can achieve a lot of information
about the manner of activity of each gene, the structure
of a protein made in a specific cell or detecting a
particular gene in an organism by studying various
phases of gene expression. Because of the large number
of genes in an organism (for example a human body has
30000 to 40000 genes), the number of experiments that
are required to fully characterize an organism by means
of gene expressions is huge. Traditional methods of
laboratory experiments required years of investigation
to characterize a disease [3,4].
Microarray analysis is a recently developed technique,
which allows study and classification of genes in a
much shorter time than ever before. Nowadays
microarray technology has turned to be one of the main
tools for genetic researches. A microarray experiment
can monitor the expressions of thousand of genes
simultaneously [5].
The substrate of a microarray consists of a piece of
glass, or sometimes a silicon chip, similar to a
microscope slide. Thousands of patches of single-
stranded DNAs which are called probes are fixed

mailto:samavi96@cc.iut.ac.ir

Iranian Journal of Electrical & Electronic Engineering, Vol. 1, No. 4, October 2005 16

(spotted) onto this substrate by a robotic arrayer. A
typical microarray is a 2×4cm membrane or a
microscope slide with a probe diameter of 75-100µm
and a 150µm distance between probes. The location and
sequence of each patch of DNA are known. A leading
use of DNA is in determining which subset of a cell’s
genes are expressed, or are actively making proteins
under certain conditions such as exposure to a drug,
toxic material, or malignancy [6].
Microarray technology is based on the ability of
complementary base pairing of the nucleic acids. Probes
are single strands with known sequences and are used as
a template to identify the unknown agents. Target DNA
mixture is then washed over onto the chip to allow base
pairing that means only highly complementary
sequences will remain bound to their pairs. Single
strands in the target mixture may come for instance
from healthy and cancerous cells. The goal could be to
identify genes that are responsible for malignancy [7].
The target DNA mixture is labeled with different
fluorescents dyes to distinguish between DNA
originating from different experimental conditions. For
instance, DNA from blood cancer cells may be labeled
with the red fluorescing dye and that from normal blood
cells with the green fluorescing dye. Then a laser
scanner at two wavelengths or channels scans the
microarray, one channel for each dye. Fluorescent
intensity corresponding to each dye is recorded
separately for each spot on the array. The products
resulting from the array-scanning process are two
fluorescent intensity images. These images are
superimposed for each spot to arrive at the actual gene
expression pattern for the cancerous blood cells. Array
of spots fluorescing purely red present genes expressed
only under cancer condition, while those that are pure
green correspond to gene expressed only under normal
conditions. Genes that are expressed under both
conditions will appear as spots of varying degrees of
yellow. The intensity ratio for each probe or spot is
proportional to the relative abundance of DNAs of the
two different samples [1]. A sample gray scale
microarray image is shown in Fig. 2 [8]. The size of the
image is 256×256 pixels and each spot is about 12×12
pixels. As shown in this figure, microarray images have
regular structures and spots normally have circular
shapes. In microarray images, spots form the foreground
of the image.

2 Microarray Image Compression
Each microarray experiment produces thousands of
images. Microarray images are large in size and also
each experiment is costly. Various organizations share
their microarray databases. For efficient storage and
sharing large number of these images, image
compression is essential [10,13].

Fig. 1 Structure of a DNA

Fig. 2 A sample gray scale microarray image [8]

A compression algorithm takes an input χ and
generates a representation cχ that requires fewer bits.
There should also b a reconstruction algorithm that
operates on the compressed representation cχ to
generate the reconstruction rχ . Based on the
requirement of reconstruction, data compression
schemes can be divided into two broad classes: lossless
compression schemes, in which χ are identical to rχ ,
and lossy compression schemes, which generally
provide much higher compression than lossless
compression but allow rχ to be different from χ [9].
“Huffman Coding” [10] and RLE (Run Length
Encoding) [11] are two well known lossless
compression schemes and “Vector Quantization” and
“Transform Coding” are among lossy schemes [9].
Discrete Cosine Transform (DCT) and Discrete Wavelet
Transform (DWT) are two of the techniques used for
transform coding. These techniques are not lossy by
nature but a quantization that is used afterward makes
them lossy. Quantization simply reduces the number of
bits needed to store the transformed coefficients by
reducing the precision of those values. Since this is a
many-to-one mapping, it is a lossy process and is the
main source of compression in an encoder.
Compression of microarray images could be done using
lossless or lossy methods. It is obvious that compression

Iranian Journal of Electrical & Electronic Engineering, Vol. 1, No. 4, October 2005 17

ratio of lossless methods is smaller than of lossy
methods. For biomedical applications in which the pixel
values have important information, lossless methods are
the more appropriate choice. In microarray images, the
intensity level of each spot contains important
information about the gene expression. Loosing any part
of this information could ruin the experiment and could
result in completely different outcomes. Thus, for
preserving the intensity of spots and their size by the
compression algorithm, lossless schemes are more
suitable. Until now, several methods have been
proposed for the microarray image compression. Most
of them are software implemented while a number of
these methods have been realized by hardware.
Jornsten et al. proposed a software compression method
called SLOCO (Segmented LOCO) which is based on
LOCO (LOw COmplexity) that is used in JPEG2000
standard [12,13]. Hua et al. proposed a method called
BASICA (Background Adjustment, Segmentation,
Image Compression and Analysis). In BASICA object-
based EBCOT (Embedded Block Coding Optimized
Truncation) is used for lossless image compression [14].
Lonardi and Luo proposed a software called “Microzip”
that after necessary processes, compress foreground
values in a lossless form and background values by
lossy means [15]. Faramarzpour et al. proposed a
software lossless compression method. This method is
based on the inherent property of microarray images
which is the circular shape of spots. The idea in this
method is to convert the 2D structure of the image into a
1D sequence which can scan the image in a highly
correlated manner while preserving its spatial continuity
[16]. Their method considers worst case scenarios and
hence, does not come up with high compression ratios.
A lossy method is proposed in [17] using a software
routine. In that method the spots in the microarray
image are extracted and a circle region is superimposed
onto each of the spots. Then a circle to square (C2S)
transform is performed to transform the area inside the
circle of each spot to a corresponding square shaped
image. The image is constructed by tiling the C2S
transformed images together. Then the image is divided
into 8×8 blocks and DCT is applied to each block. The
transformed blocks are quantized and the image is
coded by variable length coding.
A hardware method has been applied in [18] for lossless
compression of microarray images. The input image
which is inserted row-by-row to the pipeline
architecture, is processed in the first stages and is
compressed and transmitted in the final stages of the
pipeline. Karimi et al proposed in [19] two pipeline
architectures for the microarray image compression. In
the first architecture, “Pseudo-RLE” method is applied
and in the second architecture, “Residual Huffman
Coding” method is used for the compression of images.
In the residual Huffman coding method, codes are
calculated for the difference between every two
neighboring pixels. Samavi et al [20] proposed another

hardware method based on pipeline architecture for
microarray image compression. The image is first
processed and through morphological operations noise
and very small spots are eliminated. For compression
purposes they process the pixels of the image in a raster
scan order. Then a predictive coding algorithm is used
to produce a residual sequence for each raster scan.
Finally, Huffman coding is performed on the small-
magnitude residual sequences.
In this paper we propose a hardware method which can
compress microarray images with close to real time
speeds. The achieved compression ratio is even better
than some of the software routines that are in the
literature. The proposed hardware could be used for
other applications such as implementation of run length
encoding.
In section 3 of the paper the proposed architecture is
explained. Simulation results are presented in section 4
and concluding remarks are offered in section 5.

3 The Proposed Architecture
In this section, the proposed architecture is presented for
the compression of microarray images. The block
diagram of the structure is shown in Fig. 3. In this
method, image data enters the circuit in a row-by-row
manner. After the arrival of one row of the image, the
foreground and background pixels are separated from
each other. Foreground of a microarray image is the
collection of pixels whose values are non-zero (spot
pixels) and hence, background is the pool of pixels with
zero values. Because of zero values of the background
pixels, it is enough to store the coordinates. For this
reason, corresponding bitmap of each row is calculated:
for each pixel of the row which has zero value a “0” bit
and for those with non-zero values, a “1” bit is inserted
in the corresponding bitmap. Consequently, in the
resulting bitmap, bits corresponding to background are 0
and those corresponding tosspots or foreground are 1.
Here a new method is used for compressing the bitmap
of each row. In this method, indices of the starting of
strings 0’s and 1’s in the bitmap are extracted. Data that
should be transmitted for each row is the extracted
indices instead of the whole bitmap. At the receiver end
the original bitmap can be reconstructed using these
indices. A dedicated hardware is used to acquire the
indices, which will later be explained in details.
On the other hand, the foreground or the spot values,
which have corresponding 1’s in the bitmap, are
separated from the background. It is also done by the
dedicated hardware that is used to acquire the indices of
the starting of strings in the bitmap. Details of this
hardware will later be explained. Extracted foreground
values can be compressed using various compression
methods. Here, residual Huffman coding is used. For
this purpose residual values of neighboring foreground
pixels are calculated and coded using Huffman coding
method.

Iranian Journal of Electrical & Electronic Engineering, Vol. 1, No. 4, October 2005 18

Fig. 3 Block diagram of the proposed architecture

Pipeline stages for foreground compression are shown
in Fig. 4. It is assumed that each row of the input image
contains 256 pixels and the value of each pixel is
presented by an 8-bit value. One row of image is
inserted to the pipeline in each cycle of pipeline clock.
The bitmap of the input row is calculated in the first
stage of the pipeline shown in Fig. 4. The output of this
stage is a 256-bit bitmap in which one bit is assigned to
each pixel of the inserted row. If the value of a pixel is
zero, then the corresponding bitmap position will be 0,
otherwise a 1 appears in the bitmap. For calculating the
bitmap corresponding to the input row, 8 bits of each

pixel value are “OR”ed with each other. For this reason
256 8-input OR gates are used and thus the operation of
producing bitmap is done in parallel.
The calculated bitmap contains strings of 1’s and 0’s. In
the next stage of the pipeline that is shown in Fig. 4, the
starting locations of these strings are obtained. By
“XOR”ing the neighboring values, in the beginning of a
new string where there is a 0 to 1 or 1 to 0 transition the
output will be 1. In this way for the inner pixels of the
strings where the neighboring values are the same, the
output will be 0. Because each row begins with
background or zero values, the first string of the bitmap
is always a 0 string and following strings are
alternatively 1’s and 0’s. Thus knowing only the place
of the beginning of each string is enough and the type of
the strings are easily distinguishable. Hence, the indices
of elements that are 1 in the output vector of the second
stage are the beginning position of the strings of the
bitmap. We present a new hardware called Compression
Unit (C.U.) for obtaining these indices. Details of a C.U.
are shown in Fig. 5. Inputs of a C.U. are X and Y
vectors. This hardware compresses the elements of X by
eliminating those elements of X which have
corresponding zero in the Y vector.

Fig. 4 Pipeline stages for the background compression

Iranian Journal of Electrical & Electronic Engineering, Vol. 1, No. 4, October 2005 19

The designed C.U. unit is composed of units which we
call them the Routing Units (R.U.). Details of an R.U.
are shown in Fig. 6. Also shown in that figure are all
possible combinations of control signals, Cin1, Cin2,
and their corresponding routing action. For larger or
smaller input vectors, the C.U. could be scaled up or
down. Since the rows of the input image have 256
pixels, the C.U. that is shown in Fig. 5 has 256-element
input vectors.
Compression of the bitmap corresponding to the input
row is done by using a compression unit (C.U.). This is
performed by assigning 0 through 255 to the X vector.
Vector Y is the output of the second pipeline stage in
Fig. 4. The output of C.U. is a 256-element vector
whose elements are the indices of beginning of the
bitmap strings. Only a small numbers of the elements,
towards the beginning of the output vector, have
significant values. This is because the number of strings
in a row of a bitmap is much smaller than 256.

Fig. 5 Internal structure of the compression unit (CU).

Every row starts with a string of zeros; therefore, it is
not necessary to save the index value for the beginning
of these strings. Hence, the first string that we encounter
in a row is a string of 1’s. Furthermore, every row ends
with another string of zeros but the index value of start
of that string needs to be saved. By placing a zero at the
input of the first XOR at the left in Figure 4 we consider
continuity between consecutive lines which creates
higher compression ratio. In effect, the image is scanned
in a raster scan manner.
Table 1. shows different steps of the pipeline operations
on a row of the bitmap. In one step the starting positions
of different strings of 1’s and 0’s are found. We are only
interested in the index value of these starting positions.
We know that the first index in a row belongs to a string
of 1’s and from there on they alternate between 0 and 1

strings. These sparse positions are fed into the CU and
the output is a dense and ordered group of indices
corresponding to the starting positions of the strings of a
row. Figure 7 shows an example for the routing
operation of the CU. The input to the CU is, for
example, 00100101. The CU is to place the indices of
the 1’s at its input in a dense manner at its output.

(a)

Transference Control
 line Cin2

Control
 line Cin1

Up_in àDown_out 0 0

Right_in àDown_out 0 1

Up_in àLeft_out 1 0

Right_in àDown_out 1 1

Fig. 6 Details of the R.U. unit (a) structure (b) various
states of control signals

Table 1 An example for different processes performed
on a row of bitmap.

0 0 1 1 1 1 1 0 0 1 1 1 1 1 0 0 A partial bitmap of
a row

0 1 0 0 0 0 1 0 1 0 0 0 0 1 0 0 Starting position of
the strings

F E D C B A 9 8 7 6 5 4 3 2 1 0 Corresponding
index of each
position

0 0 0 0 0 0 0 0 0 0 0 0 E 9 7 2 Out put of the CU

Figure 8(a) shows an example with four spots in an
18×18 microarray image. All of the non-zero pixels
belong to the spots and are considered as foreground.
Each pixel has an eight-bit grayscale value. Therefore,
to store this image 18×18×8 bits are required. Figure
8(b) shows the bitmap of the image where the 1’s are
for the foreground pixels and 0’s correspond to the
background pixels. Figure 8(c) shows the starting
location of the strings of 0’s and 1’s in the bitmap. Only
when a new string starts we see a 1 and everywhere else

Iranian Journal of Electrical & Electronic Engineering, Vol. 1, No. 4, October 2005 20

we have 0’s. Figure 8(d) demonstrates how the indices
of these starting positions are packed together. Only
these values are required to be stored or transmitted in
order to be able to reconstruct the bitmap. Another part
of the hardware is responsible to get the foreground
pixels and using a separate CU compresses them. Figure
8(e) shows the resulted compressed foreground. These
values are further compacted using Hoffman coding.
Using a reconstructed bitmap the compressed
foreground pixels can be formed again.
The required number of bits to store the foreground and
bitmap information without any further compression
scheme is (8×24×4)+(8×54). This is because there are
24 pixels in each of the 4 spots. To indicate an all-zero
row an eight-bit code can be designated. In this way 48
starting indices and 6 all-zero rows are to be stored.
This shows that even without any type of variable
length coding a compression ratio of 2.16 is achieved.
Compression of the foreground pixels would further
increase the compression ratio.

Fig. 7 An example of the routing operation in a
Compression Unit.

Separation and compression of foreground is done in
parallel with compression of the background. In order to
separate the foreground from the background, yet
another C.U. is used. After a row of the image enters the
pipeline and its bitmap is produced, the original row and
its corresponding bitmap are inserted to the C.U. block.
The hardware used for the foreground compression is
shown in Fig. 9. This part of the circuit works in parallel
with the second stage of the pipeline shown in Figure 4.
The output of the C.U. block of Figure 9 is a vector
whose elements are the foreground pixels of the row,
bunched up towards the left, while keeping their order.
Then a predictive technique is used that capitalizes on
inter-pixel spatial redundancy. To do so, we predict the
next pixel based on the values of the previous
neighboring pixels. This is done by computing the

residual pixel which is the difference between the two
neighboring pixels. Finally, we losslessly compress the
residual data, using Huffman coding. Therefore, the
information of a row has been de-correlated which
causes the residual to have lower entropy.

4 Simulation Results
In this section we discuss the simulation results of the
proposed compression architecture. We used a range of
standard microarray images. Three of these images have
been used by MicroZip and 14 images are from ISREC
set. These images can be accessed from references [21]
and [22] respectively. Using the mentioned predictive
method, an average compression ratio of 3.89:1 is
obtained for compression of the foreground values.
Even though, the method is lossless, we obtained high
compression ratio compared to the conventional lossy
and lossless methods.
Table 2 shows a quantitative comparison of the results
of our proposed algorithm with some other algorithms.
The hardware proposed in this paper was able to
increase the compression ratio up to 2.17 times those
presented in the literature.

Table 2 Compression ratio of our method compared to
some others

Compression method Average compression ratio
MicroZip [15] 2.46
SLOCO [13] 1.83
BASICA [14] 2.04
Reference [16] 2.13
Reference [20] 1.79

Our method 3.89

Most of the routines mentioned in Table 1 are software
based. Reference [20] is a hardware implementation and
speed of processing is of main interest not the
compression ratio. In this paper we achieved higher
compression ratio than the other references due to the
following factors. First the foreground was separated
from the background hence better spatial correlations
have been achieved. Secondly, the new compression
unit that is introduced here has enabled the system to
compact the data more densely.

5 Conclusion
In this paper, we presented a new lossless compression
method for microarray images. By statistical studies on
microarray images, we concluded that for increasing
compression ratio we should separate the foreground
pixels form those of the background. For this reason a
new hardware was designed and used that could extract
out the foreground values and place them next to each
other in an orderly fashion. The proposed method has
increased the compression ratio significantly.
Comparison of the results of this method with those of
other lossless and lossy methods proves the efficiency
of this method.

Iranian Journal of Electrical & Electronic Engineering, Vol. 1, No. 4, October 2005 21

(b) (a)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 1 0 0 0 0 0 1 0 1 0

0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

0 1 0 0 0 0 0 1 0 1 0 0 0 0 0

0 1 0 0 0 0 0 1 0 1 0 0 0 0 0

0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

0 0 0 1 0 1 0 0 0 0 0 1 0 1 0

0
0

0

0

1

1

0

0

0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 1 0 1 0

0 0 1 0 0 0 1

0 1 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 1

0 0 0 1 0 1 0
0 0 0 0 0 0 0

0
0

0

0

1

1

0

0
0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 1 0 1 0 0

0 0 1 0 0 0 1 0

0 1 0 0 0 0 0 1

0 1 0 0 0 0 0 1

0 0 1 0 0 0 1 0

0 0 0 1 0 1 0 0
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0
0

0

0

0

0

0

0

0
0

0

0

0

0

0

0
0
0

0
0

0

0

0

0

0

0

0

0

0

0

0

0

0

0
0
0

(d) (c)

(e)

Fig. 8 Different steps of the suggested compression method shown for four spots.

Fig. 9 Circuitry for the foreground compression

Iranian Journal of Electrical & Electronic Engineering, Vol. 1, No. 4, October 2005 22

References
[1] D. P. Snustad and M. J. Simmons, Principles of

Genetics. John Wiley & Sons Inc., 2003.

[2] P. O. Brown and D. Botstein, “Exploring the new
world of the genome with DNA microarrays”,
Nature Genetics, Vol. 21, pp. 33-37, 1999.

[3] A. J. F. Griffiths, J. H. Miller, D. T. Suzuki, R. C.
Lewontin and W. M. Gelbart, An Introduction to
Genetic Analysis. W. H. Freeman, 2000.

[4] O. Alter, P. O. Brown and D. Botstein,
“Generalized singular value decomposition for
comparative analysis of genome-scale expression
data sets of two different organisms”, Proceeding
of National Academy of Science, U.S.A., Vol. 100,
No.6, pp. 3351-3356, Mar 2003.

[5] P. Arena, L. Fortuna and L. Occhipinti, “DNA chip
image processing via cellular neural networks”,
Proceedings of the IEEE International Symposium
on Circuits and Systems, Vol. 3, pp. 345-348, May
2001.

[6] J. T. Smith and W. M. Reichert, “The optimization
of quil-pin printed protein and DNA microarrays”,
Proceedings of the Second Joint EMBS/BMES
Conference, Vol. 2, pp. 1630-1631, 2002.

[7] M. K. Szczepanski et al, “Enhancement of the
DNA microarray chip images”, Proceedings of the
14th International Conference on Digital Signal
Processing, Vol. 1, pp. 395-398, 2002.

[8] D. V. Nguyen, A. B. Arpat, N. Wang and R. J.
Carroll, “DNA Microarray Experiments: Biological
and Technical Aspects”, Biometrics, Vol. 58, pp.
701-717, Dec. 2002.

[9] K. Sayood, Introduction to Data Compression,
Morgan Kaufmann Publishing Co., 2nd Edition:
2000.

[10] Z. Aspar, Z. Mohd Yusof and I. Suleiman,
“Parallel Huffman decoder with an optimized look
up table option on FPGA”, Proceedings of the
IEEE TENCON 2000, Vol.1, pp. 73-76, Sept. 2000.

[11] C. H. Messom, S. Demidenko, K. Subramaniam
and G. S. Gupta, “Size/position identification in
real-time image processing using run length
encoding”, Proceedings of the 19th IEEE
Conference on Instrumentation and Measurement
Technology, Vol. 2, pp. 1055-1059, May 2002.

[12] R. Jornsten, B. Yu, W. Wang and K. Ramchandran,
“Compression of cDNA and inkjet microarray
images”, Proceedings of the IEEE International
Conference on image Processing, Vol. 3, pp. 961-
964, 2002.

[13] R. Jornsten and B. Yu, “Compression of cDNA
microarray images”, Proceedings of the IEEE
International Symposium on Biomedical Imaging ,
pp. 38-41, 2002.

[14] J. Hua, Z. Liu, Z. Xiong, Q. Wu and K. Castleman,
“Microarray BASICA: background adjustment,
segmentation, image compression and analysis of
microarray images”, Proceedings of the IEEE
International Conference on Image Processing ,
Vol. 1, pp. 585-588, Sept. 2003.

[15] S. Lonardi and Y. Luo, “Girding and compression
of microarray images”, Proceedings of the IEEE
Conference on Computational Systems
Bioinformatics, pp. 122-130, Aug. 2004.

[16] N. Faramarzpour and J. Shirani Bondy, “Lossless
DNA image compression”, The Thirty-Seventh
IEEE Asilomar Conference on Signal, Systems and
computers, Pacific Grove, CA, USA, Vol. 2, pp.
1501-1504, Nov. 2003.

[17] N. Faramarzpour, S. Shirani and M. J. Deen,
“Lossy compression of cDNA microarray images”,
IEEE Conference on Electrical and Computer
Engineering, Canada, Vol. 2, pp. 735-738, May
2004.

[18] S. Samavi, S. Shirani, N. Karimi and N.
Faramarzpour, “DNA microarray image
compression by pipeline architecture”, The Thirty-
Seventh IEEE Asilomar Conference on Signal,
Systems and computers, Pacific Grove, CA, USA,
Vol. 2, pp. 2176-2179, Nov. 2003.

[19] N. Karimi, S. Samavi and S. Shirani, "Processing
and Serial Transmission of Microarray Images",
IUST-International Journal of Engineering
Science, Vol. 16, No. 1, pp. 55-69, 2005.

[20] S. Samavi, S. Shirani and N. Karimi, “Real-time
Processing and Compression of DNA Microarray
Images”, IEEE Transaction on Image Processing,
Vol. 15, No. 3, pp. 754-766, March 2006.

[21] http://www.cs.ucr.edu/yuluo/MicroZip/

[22] http://www.isrec.isbsib.ch/DEA/module8/p5_chi
p_image/Im.

http://www.cs.ucr.edu/yuluo/MicroZip/
http://www.isrec.isbsib.ch/DEA/module8/p5_chi

